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1 Applying machine learning algorithms to MD analysis

Note: everything from this section has been adjusted from previously published analysis with permission
from the authors.1

1.1 Background and outline of methodologies

A novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has spread throughout
the world. SARS-CoV-2 is less deadly but more transmissible than SARS-CoV, which appeared in late 2002.
Both viruses first engage with their host by binding to the same target protein, ACE2, via the receptor
binding domain (RBD). Herein, we will use molecular dynamics (MD) simulations and machine learning
(ML) to elucidate the differences in binding between the two viruses.

Following prior analysis,1 we wish to compare how the receptor binding domains (RBDs) for SARS-
CoV and SARS-CoV-2 bind to ACE2. Although there is a substantial portion of the SARS-CoV sequence
conserved in SARS-CoV-2, the large number of differing residues within the RBD makes analyzing each
change individually very difficult (a very large combinatorial problem). To combat the problem of iterating
through a large number of possible comparisons, we will use three ML algorithms to extract which residues
are most important to the differences in binding affinity to ACE2 between the two viruses. This will be done
by analyzing the change in pairwise residue distances between the RBD and ACE2 over time.

Here we will use multiple different supervised learning techniques. These methods can be used to predict
a classification. That is, if you were to feed a trained supervised learning algorithm a particular dataset,
it would theoretically output a classification or label that describes that data. Here, we do not want to
predict whether a set of MD trajectory data belongs to CoV or CoV2 (we know that already), but rather
use the trained algorithm to give us information as to which features (residues) are most important to the
discrimination between the two labels. Therefore, the process of our analysis (schematic shown in Figure 1)
will be outlined within the next section.

1.1.1 Obtain and process MD trajectory data

While this workshop is not primarily focused on running MD simulations, it is helpful to understand the
nature of the data we will be working with. Generally, MD simulations allow us to model the movements
of atoms, molecules, and even entire proteins. These simulations work by predicting atomic movements
based on energy potentials influenced by surrounding atoms, using fundamental principles of statistical
mechanics. MD simulations are typically run with small time steps, often on the order of 2 femtoseconds
(fs) (1 fs = 10−15 s). As a result, the computational cost of these simulations increases significantly with
both the duration and size of the simulated structure, so simulating a system like the SARS-CoV/ACE2
interaction generates a vast amount of data to process and analyze.

It is not feasible to run full MD simulations over the course of this workshop, so instead we will work
with a collection of data that has already been generated. We will analyze these data using multiple machine
learning methods and determine the consistency of the results across different approaches. By comparing
the outcomes from various techniques, we can gain a better understanding of the reliability and robustness
of our findings, ultimately leading to more accurate insights and predictions. The dataset we will look at
consists of pairwise distances between the nearest heavy atoms associated with residues (amino acids) in
the RBD and in ACE2. Each row within the dataframes will thus correspond to a single frame and each
column to a pairwise distance between residues. The residues associated with these pairs are notated within
a separate dataframe, which we will also use for this analysis. Since residue numbers may vary between
SARS-CoV and SARS-CoV-2, it is important to make sure that we compare the aligned residues, rather
than the same residue numbers, to avoid confounding information.

For the analysis associated with this workshop, we will also truncate the amount of data being processed;
otherwise, the computations would take upwards of 30 minutes to run, which is inconvenient and infeasible
for an introductory workshop. Therefore, we will remove a substantial proportion of the trajectory frames,
which should still allow us to see residue importance, just at a slightly lower accuracy and over a shorter
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Figure 1: Schematic visualizing the pathway of data processing and analysis over this tutorial.

amount of computational time. We will also do some additional data processing, which will be explained
within the subsequent sections.

1.1.2 Training the ML models

We will train a random forest model, a logistic regression model, and a Multilayer Perceptron (MLP)
model using the data obtained from our MD trajectories, following methods similar to those outlined in our
introductory machine learning tutorial. After training these models, we will obtain a dataframe containing
information about the most critical residue pairs in determining the differences between SARS-CoV and
SARS-CoV-2.

1.1.3 Analysis of residue importance

Since we have pairwise importance information, we will need to process these results to indicate which
individual residues are most important in differentiating SARS-CoV from SARS-CoV-2. We will then plot
these results and visually analyze the structures for these particular residues.
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1.2 Loading and formatting the first dataset

Before we begin with our project, it will be easier if we import all of the required modules into our Google
Colab or jupyter notebook upfront. If you run this block and don’t see any errors, you can proceed without
fear that you are missing any required modules in your Python environment.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.utils import resample

import os

import sys

from sklearn.metrics import recall_score ,accuracy_score ,confusion_matrix , f1_score ,

precision_score , auc ,roc_auc_score ,roc_curve ,

precision_recall_curve

from sklearn.ensemble import RandomForestClassifier

from sklearn.model_selection import train_test_split

from sklearn.utils import resample

from sklearn.model_selection import GridSearchCV ,train_test_split

from sklearn.metrics import (recall_score ,accuracy_score ,confusion_matrix , f1_score ,

precision_score , auc ,roc_auc_score ,roc_curve ,

precision_recall_curve ,classification_report)

from sklearn.neural_network import MLPClassifier

from sklearn.ensemble import (RandomForestClassifier ,GradientBoostingClassifier)

from sklearn.linear_model import LogisticRegression

from sklearn.gaussian_process import GaussianProcessClassifier

Now, obtain the collection of data from here. This section will describe how we will load and organize
these data to prepare for analysis.

By opening the link /QBioS2023-tutorial-files/ Tutorial2-ML-inputdata/ you should have six files: two
samples of both SARS-CoV and SARS-CoV-2 and two files indicating pairs in Cov1 and Cov2, respectively.
If using the colab, upload these files into your Google drive, copy the file path, and load them in the following
section:

#This assumes the files are in the current directory

data_direct = ’(PUT PATH TO INPUT FOLDER HERE)’

num_runs_each = 1000

#Load datasets and ensure all are the same dimension . Also note that you may need to change

the file directory

cov1_run1 = np.load (data_direct + ’/cropped_cov1_run1.npy’)

# truncate these datasets so that all four runs have the same dimension

cov1_run2 = np.load (data_direct + ’/cropped_cov1_run2.npy’)

cov2_run1 = np.load (data_direct + ’/cropped_cov2_run1.npy’)

cov2_run2 = np.load (data_direct + ’/cropped_cov1_run2.npy’)

#Load data that contains information about pairing between ACE and SARS residues

cov1_pairs = np . loadtxt (data_direct + ’/cov1pairs_resids.15.txt’, dtype = int )

cov2_pairs = np . loadtxt (data_direct + ’/cov2pairs_resids.15.txt’, dtype = int )

It is required that the cov1 and cov2 data structures have the same size, so we take an evenly distributed
number of rows. You may use as many as 10,000, but this will drastically increase computation time.
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As mentioned previously, MD simulations typically produce a very large amount of data. Analyzing
full trajectories is possible, but it would take long calculations impractical for this workshop. Therefore,
to decrease the waiting time, we will only look at distance in a few frames of the simulation, and the ML
algorithm will find the important correlations. As we are only looking at a few frames, this means that any
results we obtain from this workshop will not necessarily be indicative of those from the full trajectories, but
nevertheless will serve as a useful introduction to applications of machine learning into MD.

If you want, you can determine the size of the data by calling

cov1_run1.shape

To be clear, the rows refer to frames of the simulations, and the columns refer to the distances between the
residue pair at each frame. The cov1 pairs and cov2 pairs arrays tell us which residue pairs are associated
with each column of the runs. For example, the first row of the cov1 pairs array tells us that the pair
distances in the first column of the data is referring to residues 21 and 402.

The large data files we have here compiled a series of distances between residues sampled from MD
simulations. As residues that are closest in physical space are likely to interact and therefore have a greater
impact on the dynamics of the protein, it is reasonable to define co-residue importance by an inverse distance
relationship, so small distances will yield a large value. We will store the four data files in a pandas dataframe
(which contains residue distance data) and then take the inverse of each data point to obtain a measurement
of residue ‘importance’.

#create concatenated dataframe

df = pd.DataFrame(np.concatenate ((cov1_run1 ,cov1_run2 ,cov2_run1 ,cov2_run2),axis=0))

We concatenate the dataframe and set

axis = 0

The coefficient values in logistic regression and neural network models can be influenced by the scale
of input features. To eliminate this unwanted effect, we standardize the pairwise distances before training
the models. In doing so, we ensure that each feature has a mean of 0 and a standard deviation of 1, which
allows for a more accurate and unbiased comparison of the importance of each feature in the models. This
preprocessing step helps improve the performance and interpretability of the models.

#take inverse to more intuitively quantify residue importance

df = 1/df

#this is the standard scalar like we looked at yesterday , feel free to use that function if

you would like

df_scaled = (df-df.mean(axis=0))/df.std(axis=0)

We wish to initiate a supervised learning algorithm. This means that we will need to identify which rows
of our dataframe correspond to SARS-CoV and SARS-CoV-2. Our machine learning method will then fit a
model that will classify each residue interaction as belonging to SARS-CoV or SARS-CoV-2 with an accuracy
of 1. To this end, we can add a column to our dataframe that contains a label associating each row with the
respective SARS virus. This will become very important as we will begin to shuffle rows of the dataframe
within the next few sections.

row_bound = num_runs_each*2 #where CoV -1 ends and CoV -2 begins

df_scaled[’cov’] = ’cov’

df_scaled.iloc[:row_bound , -1] = 1

df_scaled.iloc[row_bound:, -1] = 2

Now that we have our standardized, cleaned data, we can now begin to proceed with our analysis. Currently,
we have a dataframe containing pairwise data between residues. We wish to convert these numbers such that
we end up with an ‘importance score’ for each individual residue within the SARS-CoV and SARS-CoV-2
sequences, which we can then compare. We will use machine learning to accomplish this, which should result
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in feature vectors where each feature index corresponds to a particular residue, and the magnitude of the
value corresponds to the importance of the residue.

In this tutorial, it is important to address the issue of highly correlated features when processing MD data.
Highly correlated features are variables that exhibit a strong linear relationship with each other, carrying
almost the same information. Including all of them in a model can lead to multicollinearity, a problem that
makes it challenging to determine the independent effect of each feature on the target variable.2 To mitigate
this issue, it is advisable to remove features with high correlation during data preprocessing (which we will
do in the next section). This approach can improve the efficiency and accuracy of our prediction models,
leading to more reliable insights into the differences between SARS-CoV and SARS-CoV-2.

#pull out all features from the dataframe ( everything except for the last ID column)

features_pre = df_scaled.iloc[:,:-1]

print(’# of features before drop:’, features_pre.shape[1]+1)

We are now going to generate a correlation matrix for our data. We will then remove all columns that
contain any value above a cutoff threshold.

#create correlation matrix - if it is taking too long , increase the min_periods ,

#but know this will lead to worse results

corr_matrix_before = features_pre.corr(min_periods=1).abs()

#set a cutoff threshold (usually 0.9 or 0.85)

cutoff = 0.9

With these features in place, we can begin with the following analysis.

1.3 Setting up algorithms to solve for per-residue importances

We are going to look at three different ML methods and compare the output importance of each. In the
previous tutorial, we looked at RF, LR, and MLP methods. We will use these same methods in the analysis
of residue importance within our protein-binding system.

In the original paper,1 hyperparameters for different ML models were tested and tuned to achieve optimal
performance. However, for the sake of simplicity and brevity in this tutorial, we will skip the hyperparameter
tuning step. Instead, we will utilize the previously determined hyperparameters to train our models. Let’s
initialize our models as follows:

#RF ------------------------------

# ###########################################

RF_tuned_params = {’max_depth ’: 60 ,

’max_features ’: 50 ,

’min_samples_leaf ’: 1,

’n_estimators ’: 500 ,

’n_jobs ’: -1,

’random_state ’: 42

}

RF = RandomForestClassifier(random_state=42 ,n_jobs=-1).set_params( ** RF_tuned_params)

#RF ------------------------------

# ###########################################

#LR ------------------------------

# ###########################################

LR_tuned_params = {’C’: 1,

’penalty ’: ’l1’,

’solver ’: ’liblinear ’

}
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LR = LogisticRegression(random_state = 42).set_params( ** LR_tuned_params)

#LR ------------------------------

# ###########################################

#MLP -----------------------------

# ###########################################

MLP = MLPClassifier(hidden_layer_sizes = (55), activation = ’relu’, solver = ’adam’,

max_iter= 1000)

Before continuing we will need to implement a method to sum the importance of residues across all pairs.

1.3.1 Challenge Problem 1: Generate a function to calculate residue importance

Given an array of importances across pairs, generate one array that contains the
residue numbers (no repeats), then cycle through the entire vector, summing the
importance for each respective residue. Finally, normalize these vectors so that
the maximum value of importance is 1.

Challenge Problem Solution

def sum_elements(i_array):

#calculate residue importance

resid = []

for i in i_array:

if i[0] not in resid:

resid.append(i[0]) #get array of residues with no repeats

import_sum = []

for i in resid:

su = 0

for j in i_array:

if j[0] == i:

su = su + j[1]

import_sum.append([i,su])

import_sum = np.array(import_sum)

xmax , ymax = import_sum.max(axis=0)

import_sum[:,1] /= ymax

import_sum = import_sum[import_sum[:,0].argsort ()]

return import_sum

We also need to define output dataframes to store the information calculated from our ML analysis. We
will initialize a set of dataframes that encompass all of the interacting residues that we want to look at. This
will be residues 336-519 for SARS-CoV-2, 323-503 for SARS-CoV, and 21-616 for ACE2.

#create dfs to store per -residue importance results from the ML algorithms

LR_impo_res_cov2=pd.DataFrame(columns = range(336 ,519))

RF_impo_res_cov2=pd.DataFrame(columns = range(336 ,519))

LR_impo_res_cov1=pd.DataFrame(columns = range(323 ,503))

RF_impo_res_cov1=pd.DataFrame(columns = range(323 ,503))

LR_impo_res_ace=pd.DataFrame(columns = range(21 ,616))

RF_impo_res_ace=pd.DataFrame(columns = range(21 ,616))

mlp_impo_res_cov2=pd.DataFrame(columns = range(336 ,519))

mlp_impo_res_cov1=pd.DataFrame(columns = range(323 ,503))

mlp_impo_res_ace=pd.DataFrame(columns = range(21 ,616))
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1.4 Adjustments when training ML models on our large datasets

During the tutorial from yesterday, we used the train test split() function to split our data into training
data and testing data. We will be doing the same thing here, but we need to do some secondary processing
before we can run this function. We had previously generated a correlation matrix associated with our data.
For each training iteration (we will be conducting 20 of these), we will want to shuffle all of the rows of our
correlation matrix. Then, since we are dealing with pairwise interactions, we only need to look at the upper
triangular matrix associated with our data. We will drop any columns that have a correlation greater than
the cutoff value that we set initially. As stated previously, this step is important in order to ensure that our
machine-learning algorithms provide accurate results. Exploring the effects of skipping this step is left as a
separate exercise for the reader. The algorithm for performing this dropping scenario is as follows:

#shuffle corr_matrix

arr = np.arange(len(df_scaled.columns)-1)

np.random.shuffle(arr) #there are other functions/method for shuffling these rows , free

free to use any that you prefer and

compare the results

corr_matrix = corr_matrix_before.iloc[arr ,arr]

#select upper triangle of correlation matrix

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))

#drop highly correlated features based on set threshold

to_drop = [column for column in upper.columns if any(upper[column] > cutoff)]

df_dropped = df_scaled.drop(columns = to_drop)

This shuffling will be conducted 20 times, such that each ML model will be trained from a slightly different
collection of data, increasing the overall accuracy of our final model and thus our results.

1.5 Training and evaluating our ML algorithms

Using the setup that we have created above with the basics of ML from the previous tutorial, we will now
perform our analysis.

1.5.1 Challenge Problem 2: Initialize a machine learning algorithm

Complete the code block below to develop an algorithm to prep for the imple-
mentation of an LR analysis (fill in the ellipses).

for run in range(0,20):

# correlation matrix shuffling and dropping from previous code block

....

.

.

....

######## LR part

X = df_dropped.iloc[:,:-1] #pairwise residue information

y = df_dropped[’cov’] # classification column

X, y = X.to_numpy (),y.to_numpy ()

df_lr_coef = pd.DataFrame(columns = df_dropped.columns[:-1]) # initialize df to store

information about importance from our LF

model

#\textit{consider the input and output data. Use the proper function for splitting the

data for training and testing}

X_train , X_test , y_train , y_test = ...(... ,... , test_size = 0.20 , random_state = 42)
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for rndm_state in range(0,50) :

#\textit{What is the input and ouput of the split data used for training?}

X_train_resampl ,y_train_resampl = resample (... ,... , n_samples=len(X_train),

random_state= rndm_state)

y_train_resampl=y_train_resampl.astype(’int’) #change column to have integer

datatype , rather than object

#create a dataframe to store test set performance

f1 ,prec ,recall ,acc ,ROC_AUC ,conf = ([],[],[],[],[],[])

#evaluate the performance of LR , hyperparameters were tuned for an accuracy of 1

model_name = ’LR’

clf = eval(model_name)

#\textit{What is the resampled input data?}

clf.fit(..., y_train_resampl.ravel ())

df_lr_coef = df_lr_coef.append(pd.DataFrame(clf.coef_ , columns = df_dropped.columns[

:-1]), ignore_index=True)

df_lr_coef_mean_abs = abs(df_lr_coef.mean().to_frame ().T)

#assign importance to per -residue

cov1_impor_resids = []

cov2_impor_resids = []

ace_impor_resids = []

for col in df_lr_coef_mean_abs.columns.values:

importance = df_lr_coef_mean_abs.at[0,col]

ace_impor_resids.append([cov1_pairs[col][0],importance])

cov1_impor_resids.append([cov1_pairs[col][1],importance])

cov2_impor_resids.append([cov2_pairs[col][1],importance])

#use our previously written sum importance function

lr_cov2_impor_resids_sum = ...( cov2_impor_resids)

lr_cov1_impor_resids_sum = ...( cov1_impor_resids)

lr_ace_impor_resids_sum = ...( ace_impor_resids)

#append to df

LR_impo_res_cov2 = LR_impo_res_cov2.append(pd.DataFrame(np.reshape(

lr_cov2_impor_resids_sum[:,1], (1,len(

lr_cov2_impor_resids_sum))), columns =

lr_cov2_impor_resids_sum[:,0]))

LR_impo_res_cov1 = LR_impo_res_cov1.append(pd.DataFrame(np.reshape(

lr_cov1_impor_resids_sum[:,1], (1,len(

lr_cov1_impor_resids_sum))), columns =

lr_cov1_impor_resids_sum[:,0]))

LR_impo_res_ace = LR_impo_res_ace.append(pd.DataFrame(np.reshape(lr_ace_impor_resids_sum

[:,1], (1,len(lr_ace_impor_resids_sum))),

columns = lr_ace_impor_resids_sum[:,0]))

Challenge Problem Solution

for run in range(0,20):

# correlation matrix shuffling and dropping

#shuffle corr_matrix

arr = np.arange(len(df_scaled.columns)-1)

np.random.shuffle(arr)

corr_matrix = corr_matrix_before.iloc[arr ,arr]
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#select upper triangle of correlation matrix

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))

#drop highly correlated features based on set threshold

to_drop = [column for column in upper.columns if any(upper[column] > cutoff)]

df_dropped = df_scaled.drop(columns = to_drop)

######## LR part

X = df_dropped.iloc[:,:-1]

y = df_dropped[’cov’]

X, y = X.to_numpy (),y.to_numpy ()

df_lr_coef = pd.DataFrame(columns = df_dropped.columns[:-1])

X_train , X_test , y_train , y_test = train_test_split(X,y,test_size = 0.20 , random_state =

42) #same random_state as previous GS

for rndm_state in range(0,50) : #NOTE! This iterates over 50 random states and might

take a WHILE on less powerful computers.

Consider only using a few random states (

reduced accuracy , but faster compiulation )

X_train_resampl ,y_train_resampl = resample(X_train ,y_train , n_samples=len(X_train),

random_state= rndm_state)

y_train_resampl=y_train_resampl.astype(’int’)

#create a dataframe to store test set performance

f1 ,prec ,recall ,acc ,ROC_AUC ,conf = ([],[],[],[],[],[])

#evaluate the performance of LR , hyperparameters were tuned for an accuracy of 1

model_name = ’LR’

clf = eval(model_name)

clf.fit(X_train_resampl , y_train_resampl.ravel ())

df_lr_coef = df_lr_coef.append(pd.DataFrame(clf.coef_ , columns = df_dropped.columns[

:-1]), ignore_index=True)

df_lr_coef_mean_abs = abs(df_lr_coef.mean().to_frame ().T)

#assign importance to per -residue

cov1_impor_resids = []

cov2_impor_resids = []

ace_impor_resids = []

for col in df_lr_coef_mean_abs.columns.values:

importance = df_lr_coef_mean_abs.at[0,col]

ace_impor_resids.append([cov1_pairs[col][0],importance])

cov1_impor_resids.append([cov1_pairs[col][1],importance])

cov2_impor_resids.append([cov2_pairs[col][1],importance])

#use our previously written sum importance function

lr_cov2_impor_resids_sum = sum_elements(cov2_impor_resids)

lr_cov1_impor_resids_sum = sum_elements(cov1_impor_resids)

lr_ace_impor_resids_sum = sum_elements(ace_impor_resids)

#append to df

LR_impo_res_cov2 = LR_impo_res_cov2.append(pd.DataFrame(np.reshape(

lr_cov2_impor_resids_sum[:,1], (1,len(

lr_cov2_impor_resids_sum))), columns =

lr_cov2_impor_resids_sum[:,0]))

LR_impo_res_cov1 = LR_impo_res_cov1.append(pd.DataFrame(np.reshape(

lr_cov1_impor_resids_sum[:,1], (1,len(

lr_cov1_impor_resids_sum))), columns =

lr_cov1_impor_resids_sum[:,0]))
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LR_impo_res_ace = LR_impo_res_ace.append(pd.DataFrame(np.reshape(lr_ace_impor_resids_sum

[:,1], (1,len(lr_ace_impor_resids_sum))),

columns = lr_ace_impor_resids_sum[:,0]))

1.5.2 Challenge Problem 3: Test another method

Using the same method as before, copy your previous code and revise it to work
for a random forest model. We will compare the results from these two methods,
so don’t delete your working LR code. We have included a rough outline of the
code below to include some differences associated with the RF setup.

for run in range(0,20):

# correlation matrix shuffling and dropping

......

.

.

......

####### RF part

#set up X and y the same as for the LR method

.....

.

.

.....

#random_state , we won ’t loop through 50 random states for this training

rndm_state=42

# train_test_split using our chosen random state and a test size of 0.20

.....

#create a dataframe to store test set performance

f1 ,prec ,recall ,acc ,ROC_AUC ,conf = ([],[],[],[],[],[])

y_train=y_train.astype(’int’)

#evaluate the performance of RF ,hyperparameters were tuned for an accuracy of 1

model_name = ’RF’

#fit the model using the same method as before

....

.

.

....

df_rf_coef = pd.DataFrame(np.reshape(clf.feature_importances_ , (1,num_features)),

columns = df_dropped.columns[:-1])

#assign importance to per -residue

cov1_impor_resids = []

cov2_impor_resids = []

ace_impor_resids = []

for col in df_rf_coef.columns.values:

importance = df_rf_coef.at[0,col]

ace_impor_resids.append([cov1_pairs[col][0],importance])

cov1_impor_resids.append([cov1_pairs[col][1],importance])

cov2_impor_resids.append([cov2_pairs[col][1],importance])

#use our previous sum importance function to quantify residue importance
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rf_cov2_impor_resids_sum = ...

rf_cov1_impor_resids_sum = ...

rf_ace_impor_resids_sum = ...

#append to df in the same way as we did for the LR method -- make sure to change the

names of arrays from containing ’LR’ to ’

RF’ identifiers

.....

.

.

.

.

.....

Challenge Problem Solution

for run in range(0,20):

# correlation matrix shuffling and dropping

arr = np.arange(len(df_scaled.columns)-1)

np.random.shuffle(arr)

corr_matrix = corr_matrix_before.iloc[arr ,arr]

#select upper triangle of correlation matrix

upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool))

#drop highly correlated features based on set threshold

to_drop = [column for column in upper.columns if any(upper[column] > cutoff)]

df_dropped = df_scaled.drop(columns = to_drop)

####### RF part

#set up X and y the same as for the LR method

X = df_dropped.iloc[:,:-1]

y = df_dropped[’cov’]

num_features = X.shape[1]

X, y = X.to_numpy (),y.to_numpy ()

# random_state

rndm_state=42

X_train , X_test , y_train , y_test = train_test_split(X,y,test_size = 0.20 , random_state =

rndm_state) #same random_state as

previous GS

#create a dataframe to store test set performance

f1 ,prec ,recall ,acc ,ROC_AUC ,conf = ([],[],[],[],[],[])

y_train=y_train.astype(’int’)

#evaluate the performance of RF ,hyperparameters were tuned for an accuracy of 1

model_name = ’RF’

clf = eval(model_name)

clf.fit(X_train , y_train.ravel ())

df_rf_coef = pd.DataFrame(np.reshape(clf.feature_importances_ , (1,num_features)),

columns = df_dropped.columns[:-1])

#assign importance to per -residue

cov1_impor_resids = []

cov2_impor_resids = []

ace_impor_resids = []
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for col in df_rf_coef.columns.values:

importance = df_rf_coef.at[0,col]

ace_impor_resids.append([cov1_pairs[col][0],importance])

cov1_impor_resids.append([cov1_pairs[col][1],importance])

cov2_impor_resids.append([cov2_pairs[col][1],importance])

#use our previous sum importance function to quantify residue importance

rf_cov2_impor_resids_sum = sum_elements(cov2_impor_resids)

rf_cov1_impor_resids_sum = sum_elements(cov1_impor_resids)

rf_ace_impor_resids_sum = sum_elements(ace_impor_resids)

#append to df in the same way as we did for the LR method -- make sure to change the

names of arrays from containing ’LR’ to ’

RF’ identifiers

RF_impo_res_cov2 = RF_impo_res_cov2.append(pd.DataFrame(np.reshape(

rf_cov2_impor_resids_sum[:,1], (1,len(

rf_cov2_impor_resids_sum))), columns =

rf_cov2_impor_resids_sum[:,0]))

RF_impo_res_cov1 = RF_impo_res_cov1.append(pd.DataFrame(np.reshape(

rf_cov1_impor_resids_sum[:,1], (1,len(

rf_cov1_impor_resids_sum))), columns =

rf_cov1_impor_resids_sum[:,0]))

RF_impo_res_ace = RF_impo_res_ace.append(pd.DataFrame(np.reshape(rf_ace_impor_resids_sum

[:,1], (1,len(rf_ace_impor_resids_sum))),

columns = rf_ace_impor_resids_sum[:,0]))

1.5.3 Challenge Problem 4: The final ML algorithm

Implement the MLP neural network algorithm. For an additional challenge, try
to do this without the code outline below.

#MLP section

for run in range(0,20):

#shuffle correlation matrix

.....

.

.

.....

#set up X and y

....

.

.

....

one_hot_y = y[:, None]==np.array([1,2])

#train test split using one_hot_y instead of y

.....

#fit the model

.....

#### Layer -Wise Relevance Propagation

#Feature importance was extracted from MLP using Layer -Wise Relevance Propagation (LRP)

W = clf.coefs_

B = clf.intercepts_
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L = len(W)

A = [X]+[None]*L

for l in range(L):

A[l+1] = np.maximum(0,A[l].dot(W[l])+B[l])

R = [None]*L + [A[L]*one_hot_y]

#LRP propagates relevance R from the output layer to the input layer thought the weights

of the network and

#neural activations . The propagation follows the LPR -0 rule

for l in range(0,L)[::-1]:

w = W[l]

b = B[l]

z = A[l].dot(w)+b

s = R[l+1] / z

c = s.dot(w.T)

R[l] = A[l]*c

#get each feature importance

df_mlp_coef = pd.DataFrame(np.reshape(R[0].mean(axis=0), (1,X.shape[1])), columns =

df_dropped.columns[:-1])

#assign importance from features to each residue with sum_elements method and cov1 ,

2_pairs datasets.

cov1_impor_resids = []

cov2_impor_resids = []

ace_impor_resids = []

for col in df_mlp_coef.columns.values:

importance = df_mlp_coef.at[0,col]

ace_impor_resids.append([cov1_pairs[col][0],importance])

cov1_impor_resids.append([cov1_pairs[col][1],importance])

cov2_impor_resids.append([cov2_pairs[col][1],importance])

#use our sum elements function to determine residue importance

....

.

.

.

....

#append dataframes with residue importances

....

.

.

.

....

Challenge Problem Solution

#MLP section

for run in range(0,20):

#shuffle correlation matrix

arr = np.arange(len(df_scaled.columns)-1) #range from 0-4885

np.random.shuffle(arr)

corr_matrix = corr_matrix_before.iloc[arr ,arr]
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upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1).astype(bool)) #k=1

says we want the diagonal above the main

to_drop = [column for column in upper.columns if any(upper[column] > cutoff)] #obtain

list of columns to drop based on cutoff

thresh

df_dropped = df_scaled.drop(columns = to_drop)

#set up X and y

X = df_dropped.iloc[:,:-1]

y = df_dropped[’cov’]

X, y = X.to_numpy (), y.to_numpy ()

one_hot_y = y[:, None]==np.array([1,2])

#train test split using one_hot_y

X_train , X_test , y_train , y_test = train_test_split(X, one_hot_y , test_size=0.2,

random_state = 666)

#fit the model

clf = MLP.fit(X_train , y_train)

#### Layer -Wise Relevance Propagation

#Feature importance was extracted from MLP using Layer -Wise Relevance Propagation (LRP)

W = clf.coefs_

B = clf.intercepts_

L = len(W)

A = [X]+[None]*L

for l in range(L):

A[l+1] = np.maximum(0,A[l].dot(W[l])+B[l])

R = [None]*L + [A[L]*one_hot_y]

#LRP propagates relevance R from the output layer to the input layer through the weights

of the network and

#neural activations . The propagation follows the LPR -0 rule

for l in range(0,L)[::-1]:

w = W[l]

b = B[l]

z = A[l].dot(w)+b

s = R[l+1] / z

c = s.dot(w.T)

R[l] = A[l]*c

#get each feature importance

df_mlp_coef = pd.DataFrame(np.reshape(R[0].mean(axis=0), (1,X.shape[1])), columns =

df_dropped.columns[:-1])

#assign importance from features to each residue with sum_elements method and cov1 ,

2_pairs datasets.

cov1_impor_resids = []

cov2_impor_resids = []

ace_impor_resids = []

for col in df_mlp_coef.columns.values:

importance = df_mlp_coef.at[0,col]

ace_impor_resids.append([cov1_pairs[col][0],importance])

cov1_impor_resids.append([cov1_pairs[col][1],importance])

cov2_impor_resids.append([cov2_pairs[col][1],importance])

#get residue importance from our function

mlp_cov2_impor_resids_sum = sum_elements(cov2_impor_resids)
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mlp_cov1_impor_resids_sum = sum_elements(cov1_impor_resids)

mlp_ace_impor_resids_sum = sum_elements(ace_impor_resids)

#append dataframes with calculated residue importances

mlp_impo_res_cov2 = mlp_impo_res_cov2.append(pd.DataFrame(np.reshape(

mlp_cov2_impor_resids_sum[:,1], (1,len(

mlp_cov2_impor_resids_sum))), columns =

mlp_cov2_impor_resids_sum[:,0]))

mlp_impo_res_cov1 = mlp_impo_res_cov1.append(pd.DataFrame(np.reshape(

mlp_cov1_impor_resids_sum[:,1], (1,len(

mlp_cov1_impor_resids_sum))), columns =

mlp_cov1_impor_resids_sum[:,0]))

mlp_impo_res_ace = mlp_impo_res_ace.append(pd.DataFrame(np.reshape(

mlp_ace_impor_resids_sum[:,1], (1,len(

mlp_ace_impor_resids_sum))), columns =

mlp_ace_impor_resids_sum[:,0]))

1.5.4 Cleaning the data

After your code has been run, clean the data (change any NaN values to zeros).

RF_impo_res_cov2 = RF_impo_res_cov2.fillna(0)

LR_impo_res_cov2 = LR_impo_res_cov2.fillna(0)

RF_impo_res_cov1 = RF_impo_res_cov1.fillna(0)

LR_impo_res_cov1 = LR_impo_res_cov1.fillna(0)

RF_impo_res_ace = RF_impo_res_ace.fillna(0)

LR_impo_res_ace = LR_impo_res_ace.fillna(0)

mlp_impo_res_cov2 = mlp_impo_res_cov2.fillna(0)

mlp_impo_res_cov1 = mlp_impo_res_cov1.fillna(0)

mlp_impo_res_ace = mlp_impo_res_ace.fillna(0)

1.6 Plotting and analyzing results

1.6.1 Challenge Problem 5: Plot the results

Plot the results of residue importance over the different ML methods we tested
and determine which residues appear to have the highest importance for this
system (these values are saved in the XX impo res cov2 dataframes). Take the
mean of each of these dataframes (dataframe.mean()) and then plot them using
matplotlib. Here, we are going to consider residues with an importance greater
than 0.7 for further analysis; indicate this cutoff on your figure (we suggest using
plt.hlines).

Challenge Problem Solution

#get the final plot

LR_impo_res_cov2.mean().plot(figsize = (15 ,7), linewidth=3.0, color= ’dodgerblue ’, label=’LR

’)

RF_impo_res_cov2.mean().plot(figsize = (15 ,7), linewidth=3.0, color=’mediumorchid ’, label=’

RF’)

mlp_impo_res_cov2.mean().plot(figsize = (15 ,7), xlim=(390 , 519), linewidth=3.0, color = ’

turquoise ’, label=’MLP’)

plt.hlines(0.7,390 , 519 ,linestyles=’dotted ’, colors=’k’, linewidth=3)

plt.xlabel(’Residue number ’, fontsize=18 , fontweight=’bold’)

plt.ylabel(’Residue importance ’, fontsize=18 , fontweight=’bold’)\
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Figure 2: Final figure. Dotted line at importance = 0.7 is used as a cutoff for further analysis.

plt.legend ()

plt.savefig(per-residue_importance_all.ave_20.png’, format=’png’)
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2 Visualization of SARS: putting it all together

The previous tutorial focused on the analysis of MD trajectory data with the goal of determining residues
key for distinguishing between SARS-CoV and SARS-CoV-2. This tutorial will now outline how to visually
analyze results from MD simulations and connect conclusions derived from our ML analysis to our protein
structures in context. To accomplish this, we will load MD trajectories in PyMOL and make observations
and inferences based on the apparent interactions between ACE2 and the SARS RBD.

Open a new pymol window, fetch the pdb 2AJF from the command line, and color by chain. You should
see four differently colored structures, two copies of the SARS rRBDs and the corresponding ACE2 receptor.
For this analysis, we only want to look at one set of these complexes, so type

PyMOL> remove Chain B

PyMOL> remove Chain D

PyMOL> remove Chain F

into the command line.
Once this is done, we have a system containing ions, two proteins, and several ligands. Since we deleted

about half of our system, you may want to click ‘A → zoom’ to recenter and reorient the structure. For
the sake of this project, we will focus on analyzing the structure of the protein binding sites. We wish
to look at the interface between the ACE2 receptor and the SARS RBD and understand the differences
in interactions between amino acids within the RBD between SARS-CoV and SARS-CoV-2 to potentially
provide an explanation as to how the two viruses differ in effective binding.

Before we visualize trajectories obtained from MD simulations, we can initially visualize the distances
between atoms within the binding region. This will give us a general idea on the distance between the
residues, which can be used as a basis for examining more dynamic simulations. Although the ACE2-RBD
structure is much more complex than the structures we looked at in the previous PyMOL tutorial, we can
find a location of interest simply by observing the location where the two chains are closest (Figure 3).
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Figure 3: Visualization of SARS-CoV RBD with ACE2. The location where the two proteins meet is of
interest to us as differences in chemical composition here will affect binding and thus transmissibility of
SARS.

Find resi 426 (arginine, R) and resi 329 (glutamic acid, E) using the sequence viewer and show them in
licorice. In the toolbar, go to wizard → measurement. Options will appear in the right-hand corner, where
the mouse commands are also listed. By default, the measurement wizard begins with distances, which is
what we need for this task. Click two close points on the two residues that we chose and observe the distance
(Figure 4).
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Figure 4: Distance between residues Arg426 and Glu329 for SARS-CoV and ACE2 (PDBID: 2AJF).

These distances are measured in Ångstroms; for context, the length of a C-C bond is approximately 1.5 Å
and the length of a hydrogen bond can range from 2.7-3.3 Å. Therefore, any distance around this range could
indicate a potential interaction among residues.

2.0.1 Challenge Problem 1: First inspection of SARS-CoV versus SARS-CoV-2

Align a SARS-CoV (PDBID: 2AJF) and SARS-CoV-2 (PDBID: 6M17) chain and
determine if you can visually see any differences among the strands, especially
near and within the RBDs. You will want to delete chains A-C, E, and G-O
from the 6M17 pdb before aligning (to do this easily, type remove chain X

and 6M17 in the PyMOL command line for each chain you wish to remove).
The ACE2 proteins are not important here (they are the same for both protein
files), so you should focus on the differences between the SARS proteins. Take a
picture that illustrates a location within the SARS protein that noticeably differs
between the two strains.
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Challenge Problem Solution

Example of the process of visually seeing a difference in structure between the SARS CoV (pink) and SARS
CoV-2 (cyan) and zooming in before focusing on the discrepancy at one amino acid location.

This is another example of a collection of residues that differ between the two SARS chains.
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Now that you have explored a little on your own, look specifically at some of the differences in interactions
between the RBD and ACE2 between CoV-1 and CoV-2. Compare the following sets of residues. It is helpful
to note how the indices on the PyMOL sequence viewer are arranged; if you want to find residue 456, the
corresponding residue will be marked under the 4 and not the 6.

CoV/ACE2 CoV-2/ACE2
Lys390/Glu37 Arg403/Glu37
Val404/Asp30 Lys417/Asp30
Arg426/Glu329 Asn439/Glu329

Can you determine which mutations are likely to be a reason as to why SARS-CoV-2 can more stably
bind to the ACE2 receptor protein? This isn’t always clear, and thus why we need to implement analysis
techniques such as our machine learning algorithms and other quantification methods. It is also worth
remembering that proteins are not static; the natural movement of the protein can cause residues to come
closer together or move farther apart, resulting in fluctuations of intermolecular interactions as a function
of time.

2.1 Visualizing MD trajectories

The previous tutorials have served as an introduction both to using molecular visualization software and to
protein analysis more generally. However, analysis of static proteins is generally trivial, and we can glean
more fundamental information about the system via dynamics. In order to understand more about how the
proteins in our system interact, we can run MD simulations on both a SARS-CoV and SARS-CoV-2 sample
to compare interactions of the RBD with the ACE2 protein receptor.

Download the sample trajectories here. Here, we have a .pdb file, which is a similar format to the files
we have been ‘fetching’ through PyMOL. These files contain the atomic information of the protein. We
also have multiple .dcd (trajectory) files that carry information about how each atom moves during an MD
simulation. Using PyMOL, it is simple to view these trajectories. Open a new PyMOL window and type

PyMOL> load CoV2-ng.nowat.pdb, CoV2_run1

PyMOL> load_traj CoV2-ng-run1.nowat-2us.dcd, CoV2_run1

In doing this, we are creating two objects, CoV run1 and CoV2 run1. If after loading the trajectories, you
can no longer see the protein, click A → center. You can then press the play button located near the sequence
viewer button to watch the system’s movements over time.

Although it is simple to view an MD trajectory in PyMOL, it may be difficult to glean any meaningful
information at first glance. For instance, without alteration, it is difficult to tell apart visually the RBD and
the ACE2 proteins. The ions used within the simulation also make it hard to see what is going on within
the system. You can remove these by typing into the command line:

PyMOL> remove resn SOD

PyMOL> remove resn CLA

Finally, the speed of frame movement is objectively too fast to be able to comprehend. You can adjust this
setting via the command:

PyMOL> set movie_fps, 10

Adjusting these settings to create a visually appealing movie will be the subject of the next challenge problem.
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2.1.1 Challenge Problem 2: Making a movie

Use your PyMOL skills to make a comprehensible movie. Remove non-protein
atoms, color structures based on chains, and reduce the frame rate (if you have
not already). If you would like, you can save this movie via the option within
the ‘file’ toolbar or via the command ‘mpng nameofmovie’ in the command line.
Based on this movie, find two residues which are close together or exhibit seem-
ingly interesting related movement behavior. Use the measurement wizard to
find the distance between these residues or angles between residues (click on the
word distances to change among measurement options; you could choose angles,
dihedrals, or even polar contacts, if you would prefer), and observe how this value
changes across the extent of the simulation (you may need to reduce the frame
rate further to keep track of the moving protein).

2.2 Pinpointing key residues

From our previous analysis, we have determined that the SARS residues of greatest importance within this
system are 417, 455, 493, 403, 501, and 439 for the logistic regression method, 456, 455, 417, 403, 439, 445,
501 for the random forest method, and 403, 417, 439, 455, and 501 for the multilayer perceptron method.
We have also determined that the ACE2 residues of most importance are 31, 33, 34, 35, and 38 for the LR
method, 21, 30, 33, and 34 for the RF method, and 30, 31, 34, 35, 38, and 353 for the MLP method. We
want to be able to visualize these key residues and produce pictures that compare the residues identified by
both methods.

2.2.1 Challenge Problem 3: Visualizing residues of importance

Use any technique you would like to visually identify the residues of importance
for the binding of SARS-CoV-2 to ACE2 based on the different ML analysis
methods that we used within the previous tutorial. Use the labels feature within
PyMOL to indicate the residue names and sequence locations. Take a picture of
the result and compare across methods. Based on visual evidence, do you think
that one method was more effective than another?
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Challenge Problem Solution

It’s not necessarily clear which method is ‘better’, but it is worthwhile to discuss the results and how they
differ.
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