QBioS 2023 Spring Workshop

Tutorial 1: Introduction to PyMOL and to Machine Learning

May 15, 2023

Contents

1 Introduction to molecular visualization

1.1 Setting up PyMOL o o
1.2 Loading your first protein
1.2.1 Challenge Problem 1: Exploring multiple ways to visualize a protein
1.2.2 Challenge Problem 2: Observing amino acids
1.2.3 Tips for using the measurement wizard
1.3 Adding some complexity
1.3.1 Challenge Problem 3: Isolating a ligand
1.4 Mini project: Understanding the SARS main protease
1.4.1 Challenge Problem 4: Characterizing mutants
1.4.2 Challenge Problem 5: Visualizing different interactions
1.4.3 Challenge Problem 6: Putting it together

Introduction to machine learning
2.1 Background and fundamentals
2.2 Decision tree model
2.2.1 Example: Know your flowers L
2.3 Random Forest classifier
2.3.1 Challenge Problem 1: Bigger numbers
2.3.2 Challenge Problem 2: Quantifying accuracy dynamics
2.4 Logistic Regression e
2.4.1 Example: Will it rain tomorrow? Lo
2.4.2 Challenge Problem 3: Logs versus forests
2.4.3 Challenge Problem 4: Too many imposters
2.5 Multilayer Perceptron
2.6 Transformers and pre-proCesSOrS v v v v v b e e e e e e e e e
2.7 Pipelines L e e
2.7.1 Example: Using a pipeline
2.7.2 Challenge Problem 5: Down the pipeline
2.7.3 Challenge Problem 6: Again with MLP
2.7.4 Challenge Problem 7: The only alcohol you will get served

2 1 INTRODUCTION TO MOLECULAR VISUALIZATION

1 Introduction to molecular visualization

In this tutorial, we will outline some basic methods of visualizing proteins, which will be crucial to better
understand the context of the machine learning analysis that we will conduct and discuss over the course of
this workshop.

1.1 Setting up PyMOL

PyMOL is a molecular visualization software that is simple to download and use. Instructions for download
can be found here. When you first load the software, if everything has compiled correctly, you should see
the interface in Figure 1. By default, you should get a 30-day free trial of this software, so don’t worry if
you are prompted for a license upon initialization.

The top part of the screen functions similarly to a terminal; that is, if you type

PyMOL> pwd
PyMOL> 1s

you should see the path to your working directory followed by the list of files in your current directory.
Since we will be writing and saving images within this tutorial, I recommend changing directories since, by
default, PyMOL will load in your home directory. You can use basic Linux navigation commands within
this interface, but you won’t be able to create or modify directories and files here. Create a directory that
you want to work in (using your terminal or file viewer) and then change into that directory by typing:

PyMOL> cd /path/to/your/directory

Detected GLSL version 1.20. Reset Zoom _ Orient Draw/Ray
OpenGL graphics engine: EXternal GUI S .

GL_VENDOR: Apple Unpick Deselect Rock Get View
GL_RENDERER: Apple M1 | |< < Stop Play > >| MClear

GL_VERSION: 2.1 Metal - 76.3
License Expiry date: 13-oct-2023
Detected 8 CPU cores. Enabled multithreaded rendering.

Builder Properties Rebuild
Undo Redo

PyMOL>

\ als ML)

Object list

Internal GUI
Mouse/selection/playback N

Figure 1: Annotated PyMOL user interface.

Display area

PyMOL>_

3 1 INTRODUCTION TO MOLECULAR VISUALIZATION
Table 1: Main PyMOL functions

Letter | Definition Application
A Action general manipulation of objects
S Show change representation
H Hide hide atoms
L Label labelling
C Color change colors

1.2 Loading your first protein

As a basic introduction to PyMOL, we offer instructions to analyze a very basic protein.
In the PyMOL command line, type

PyMOL> fetch 1AKI.

This will load a protein structure, hen egg-white lysozyme, which is a very simple enzyme that we will
look at before expanding to a more complicated viral system. This enzyme is (conveniently) quite short
and functions to catalyze hydrolysis, i.e., the breaking apart of two molecules. Once loaded, a gray bar will
appear on the right side of the screen with the Protein Data Bank (PDB) ID of the protein (in this case
1AKI). Each letter within this bar is associated with a different function (Table 1).

When loaded, the protein will be in a ‘cartoon’ visualization, where « helices and (sheets are shown
as spirals and arrows, respectively. These are key components of protein secondary structure and are thus
crucial to the structure and functionality of the molecule. For the sake of this tutorial, we will not go into
more depth regarding the construction of these structural components, but it is important to note how
amino acids can interact with each other via bonded and nonbonded interactions, which is dependent on the
structure of the protein components.

Before we continue, it will be important for you to be able to easily manipulate proteins within the
PyMOL interface. The bottom right of the screen (Figure 1) shows the current mouse mode and the
options for editing or moving. Changing mouse — 1 button viewing in the top toolbar can be useful to
implement simpler mouse functionality for laptop trackpads. Otherwise, 3-button mouse features can often
be implemented with the trackpad by using the control, command, shift, and alt keys. Once we load our
first protein, experiment with navigating throughout the visual area using combinations of these keys in 3-
button mouse viewing, and adjust to 1-button viewing if necessary. To begin, when using 1-button viewing,
clicking anywhere and dragging will rotate the protein around its rotational axis. You can change this axis
at any time by clicking anywhere on the protein and selecting A — origin or A — zoom. Holding control
(PC/Linux) or command (Mac) and clicking and dragging will allow you to zoom in and out. Clicking alt
(PC/Linux) or option (Mac) and dragging will allow you to translate your protein across the screen.

Click C' — by ss — choose any option here. This will distinctly color the secondary structures and give
you a better idea about where these different components begin and end. Your protein should now look like
Figure 2. We can take a picture of this image by typing the following commands into the command window:

PyMOL> ray 1000,1000
PyMOL> png lysozyme.png

This will save a picture of the structure within the visual window as lysozyme.png into your previously
chosen directory. The ray command will make an image of the specified height and width; in this case, we
specified dimensions of 1000x1000 pixels. These values can be adjusted to image different-sized areas, but
note that a very large area could take multiple minutes to render.

Click S — as — licorice — sticks. This will show explicitly the molecular structure of the amino acids
within the protein. This representation, therefore, can contain information regarding which atoms are close
to each other within the protein structure. This representation, however, does not contain any hydrogens

4 1 INTRODUCTION TO MOLECULAR VISUALIZATION

Figure 2: Hen egg white lysozyme (PDB: 1AKI).

(crystal structures typically do not include hydrogens). We can add these back in via the command A —
hydrogens — add. You may notice that this command also makes it easier to see the water molecules in
which the protein is solvated. To change back to the original viewing image, click S — as — cartoon. Lastly,
to see a more holistic view of the entire protein, we can choose S — as — surface. This representation allows
us to see the full globular form of the protein but isn’t particularly useful for analysis of specific residue or
atomic interactions.

1.2.1 Challenge Problem 1: Exploring multiple ways to visualize a protein

Generate three distinct visual representations of lysozyme. Use the Settings tab
in the toolbar to explore various options, rather than relying solely on default
settings. Consider different ways to depict the enzyme’s shape, including any
binding pockets (easier to see in surface or mesh representation), as well as more
detailed atomic representations. If needed, you can include the earlier cartoon
representation as one of the three images.

) 1 INTRODUCTION TO MOLECULAR VISUALIZATION

Challenge Problem Solution

It is important to be able to see both the shape of the protein and the
approximate proportion of atoms. For instance, it is clear that the majority of
the protein appears to consist of nitrogen, oxygen, and carbon atoms, but sulfur
atoms are also scattered throughout, albeit sparsely. This would not be able to
be seen when only looking at the cartoon view.

Click on the S, shown in Figure 3 or go to Display — sequence in the top toolbar. This will show you
the amino acid sequence of the protein. Highlighting any of these sequence strings will immediately show it
within the visual interface. Highlighted residues will be temporarily stored in the variable ‘sele’, which can
be manipulated in a similar way to the full protein.

1.2.2 Challenge Problem 2: Observing amino acids

Identify and select the amino acids located within the beta-sheet of the hen
lysozyme protein, represented by the two arrows in the cartoon depiction. Once
you have visually identified your residues of interest, click on them to temporarily
store them into the ’sele’ variable. Copy these residues into a separate object (on
your sele object, click A — copy to object), display them in a licorice format,
and color by element C — by element. Additionally, add hydrogen atoms to
the structure and show any hydrogen bonds between the residues. To reveal
the hydrogen bonds, navigate to the A — Find — Polar Contacts — Intra-Main
Chain option on your created object. Use the measurement wizard located in the
top toolbar to calculate the length of the hydrogen bonds present in this section
of the protein structure.

1.2.3 Tips for using the measurement wizard

The measurement wizard is useful for measuring distances, angles, dihedrals, and more. To measure the
distance between two atoms click Wizard — measurement — (click on the first atom) — (click on the second

6 1 INTRODUCTION TO MOLECULAR VISUALIZATION

_

Figure 3: PyMOL mouse option descriptions. The red circle indicates the location of the sequence viewer.
Clicking the button which says ‘Residues’ will also allow you to change the default selection from residues
to atoms, chains, etc. Clicking the button next to ‘mouse mode’ will quickly allow you to change between
3-button viewing, 3-button editing, and 1-button viewing, among other settings.

atom). This will generate a new ‘measurement’ object, which shows a dashed line between the two chosen
atoms and its length in angstroms, saved as ‘measure01’. This object can be manipulated in a similar way to
your protein; click the object name to hide the measurement, or delete it completely by clicking A — delete.

7 1 INTRODUCTION TO MOLECULAR VISUALIZATION

Challenge Problem Solution

This can be accomplished manually by clicking on residues and selecting
(which can be good for visual understanding), but also quickly done via the
command ‘sele chain A and ss S’ (it is convenient to use logical arguments within
PyMOL). Although understanding hydrogen bonding is outside the scope of this
tutorial, this exercise provides an example to visualize potential intermolecular
interactions.

We will finish up this section by manipulating the representation of the enzyme around a certain point
of interest. In doing so, it will also be very useful to learn how to manipulate temporary selections. Click
on any residue within the protein. This will temporarily store the selection into the variable ‘sele’. Then
click A — modify — around — residues within 12 angstroms. Once done, a much larger number of residues
should be selected. You can then change the representation of this selection. This technique will be very
useful when analyzing amino acids near particular ligands, ions, or residues.

Throughout the first part of this tutorial, we have covered basic visual manipulation of proteins using
PyMOL along with some brief basics on protein structure. The next sections will continue this trend and
allow you to gain an intuition for observing potential intermolecular interactions and differences between
proteins with similar structures.

1.3 Adding some complexity

We will now investigate a protein in a complex with a substrate. This tutorial will help you better understand
intermolecular interactions that can occur between proteins of within a protein-substrate complex.

Create a new PyMOL window (or delete everything in your current session). In the PyMOL command
line, type

PyMOL> fetch 4I8N

8 1 INTRODUCTION TO MOLECULAR VISUALIZATION

Figure 4: PTP1B protein (PDBID: 4I8N).

Color by secondary structure and observe your protein, which should look like Figure 4 (note: the colors
used here are different from the default; feel free to explore different color palettes for your protein structure).
This protein is called protein tyrosine phosphatase 1B (PTP1B), and functions to remove phosphate groups
from molecules. For the sake of this tutorial, it is important only to know that this protein can be inhibited,
and that an inhibitor molecule is also found within this pdb file. Typically, when loading in a pdb file
containing both a protein and a ligand, the protein will be automatically visualized in ‘cartoon’ format and
the ligand in ‘licorice’ format. This makes it easy to identify the ligand upon first loading of the molecule.
PTPI1B is an interesting protein because we can directly compare it to other proteins within the same PTP
family. For instance, type into the command line

PyMOL> fetch 1L8K
PyMOL> align 4I8N, 1L8K

Here we have fetched another protein, a T-cell protein tyrosine phosphatase (TC-PTP), which is known to be
homologous, or containing very similar secondary and tertiary structure, to PTP1B.! We have also aligned
the two proteins so that we can better see their similarity. It is easier to view the similarities by first hiding
any ligands and then making sure that each protein is colored one color (rather than having differentiated
colors for secondary structure, atom types, etc.). Your alignment should look like Figure 5. When we
align these proteins, PyMOL will immediately quantify how close the objects are via their root-mean-square
deviation (RMSD), distance discrepancy, calculation; the lower this number, the closer the two structures.
The RMSD for this alignment is 0.556 A (0.0556 nm), which is very small, as we would expect. It is a useful
exercise to pick out which components of the proteins appear the most dissimilar. With proteins that have
a high sequence conservation, discrepancies are often due to missing residues within the pdb file (these will
show as greyed letters within the sequence view in PyMOL). For instance, there is an « helix contained
within the pdb file for PTP1B (4I8N) that is not present within the TC-PTP structure (1L8K). Can you
identify this helix?

When looking at an enzyme, we often care about the residues within the active site which are able to
interact with associated ligand(s). Although interaction distances can vary across proteins due to potential
catalytic movements, we can make a general estimate of how close a residue needs to be in order to have

9 1 INTRODUCTION TO MOLECULAR VISUALIZATION

Figure 5: Alignment of PTP1B (green) and TC-PTP (yellow).

a potential interaction. For the sake of this tutorial, we will claim that any protein residue within 4 A
(1 A=10"10 m) of the ligand could potentially interact, and then we will visually investigate to see which
ones are more likely candidates.

1.3.1 Challenge Problem 3: Isolating a ligand

Copy the inhibitor (the residues shown in sticks when you initially fetch the
structure) to a new object and rename. Change the color of this ligand and
identify the amino acids within the PTP1B protein that could potentially interact
with it by using the modify around command after selecting the ligand. Change
the representation of these amino acids to licorice format. Find several residues
that appear closest to the ligand (they will be on the inside of the protein).
Use PyMOL to find any nearby polar contacts within the selection. Measure
distances among the nearest neighbors. Save a png image of the ligand, its
closest neighbors, and the corresponding atom distances.

10 1 INTRODUCTION TO MOLECULAR VISUALIZATION

Challenge Problem Solution

Machine learning can be used to provide an avenue for quantifying these
potential interactions. As of right now, we are only predicting interactions
based on static images.

Once we have a list of residues that may be interacting with the ligand, we should inspect them more
thoroughly to determine what sorts of interactions could occur. Different amino acids exhibit different
chemical properties. Although a more thorough explanation of chemical interactions is out of the scope of
this tutorial, it is worth noting specifically that hydrophobic species will not interact with polar or charged
species. Polar species will be more likely to form hydrogen bonds, while charged species can form electrostatic
interactions. Determine what types of interactions can be possible within the PTP1B protein-ligand complex.
A figure containing amino acid properties is provided for your reference (Figure 6).

1.4 Mini project: Understanding the SARS main protease

Now that you have sufficient skills in molecular visualization and a better idea for how atoms can interact
within a larger protein, we will look at some further applications into understanding viral efficacy.

We will be looking at the main SARS-CoV protease. This enzyme is responsible for processing the
majority of the replication proteins generated from SARS-CoV.” As a result, inhibiting the functionality
of this enzyme could serve as a method for mitigating SARS-CoV. Through this mini project, you will
analyze this protein and associated mutants to make observations on how single point mutations can alter
the functionality of the key enzyme.

11 1 INTRODUCTION TO MOLECULAR VISUALIZATION

Nonpolar Forms disulfide Polar
(hydrophobic) bonds (hydrophilic)

Met (M)

Asn (N)
Val(V) Ala(A) Gln (Q)

Ite (1 Cys (C)
Leu (L) e(l) Thr (T)

Phe (F) Trp (W)
Pro (P) Tyr (Y) His (H)
Gly (G)

Break a-helix
structure

Aromatic
(ring structure)
Charged

Acidic
Basic

Figure 6: Venn diagram illustrating key chemical characteristics of amino acids. This figure can be used as
a reference when looking into protein-protein interactions.

1.4.1 Challenge Problem 4: Characterizing mutants

Fetch the pdb 6Y2E and download the mutants of this protein, chosen
previously,” from here. Find the mutations by comparing the sequences to the
original structure, and use any PyMOL skills that you desire to determine how

these mutations could affect the functionality of the protein. As a tip, the
easiest way to quickly identify the differences visually would be to manipulate
the coloring and representation of each protein, ensuring that all structures are

aligned. Take a picture of each mutated residue aligned with the original
structure (there is only one per structure). Can you determine where potential
active sites may be located? If so, take a picture of the potential sites (it may
be easier to change the protein to a surface representation for this). Label each
mutant object in the format AYYYB, where A residue at position YYY within

the wild type species is replaced by a mutated residue, B (ex: A611V would
mean the alanine at position 611 was mutated to a valine).

Now that we have a grasp on how our mutants differ from each other, we will now look at how the protease
(and its mutants) will interact with an inhibitor, nirmatrelvir, the key component of the drug Paxlovid.

12 1 INTRODUCTION TO MOLECULAR VISUALIZATION

1.4.2 Challenge Problem 5: Visualizing different interactions

Fetch the pdbs 8DZ2, 7U28, 7U29, and 7TLL. Determine which mutants these
pdbs correspond to from the last challenge problems. Examine interactions
within the active site between each protein and the inhibitor and determine
whether it is possible to see an immediate difference between the potential

effectivity of the inhibitor across the different proteins. Then, expand your gaze

across the protein. These structures have a greater discrepancy than the
previous ones, as they have been experimentally visualized rather than
generated solely using PyMOL mutations. Take pictures of any differences
among the mutants that are of interest to you. In summary, after aligning the
structures, find areas that do not appear the same and determine if these
differences can be directly traced to an amino acid mutation or rather if these
differences occur despite identical residue sequences within these locations.

Lastly, we will explore the interactions between this protease and nirmatrelvir along with the mechanistic
impact of the mutations that we have chosen.

1.4.3 Challenge Problem 6: Putting it together

Do some research and find how SARS interacts with nirmatrelvir and how
mutating specific amino acids can alter these interactions (a good place to
begin would be a recent study by Ullrich et al.”). Go back into the pdbs from
earlier and try and pinpoint these locations/residues of interest. Do these
locations line up with the discrepancies that you imaged for the last problem?

13 2 INTRODUCTION TO MACHINE LEARNING

2 Introduction to machine learning

2.1 Background and fundamentals

Machine learning is a branch of artificial intelligence that focuses on teaching computers to learn and improve
without explicit programming. Implementation of machine learning models allows us to design systems that
can automatically identify patterns, make predictions, and take action based on data, rather than relying
on human instructions. Later, we’ll use one particular Python code suite sklearn to analyze the differences
between SARS-CoV and SARS-CoV-2. But before we can handle that, we need to cover the basics of machine
learning.

In this project, we will be using supervised machine learning, meaning that each of our data points will
have a distinct label, which we can then differentiate. This process is analagous to the way we distinguish
between a dog and a bird, where we use the features of each animal to determine the classification. Once
the algorithm learns how to distinguish between different inputs, it can then predict the category of a novel
input.

Classification algorithms can take a probabilistic approach, rule-based approach, or combination of both.
The process of selecting a specific machine learning model is often done in a subjective manner, and the
effectiveness of different models can vary depending on the relationships within the data. In this tutorial,
we will explore three types of classification models: Logistic Regression model, Random Forest model, and
Multilayer Perceptron.

This tutorial will make use of the scikit-learn Python package. Instructions for installation can be found
here. We recommend creating a virtual environment to install this package, but that decision is up to the
user. For reference, instructions for how to generate and manage virtual conda environments can be found
here. You should also have installed the matplotlib, numpy, and pandas packages.

2.2 Decision tree model

A random forest model is an estimator that fits a number of decision tree classifiers on sub-samples of a
dataset, averaging to increase the accuracy of the predictive fitting. Therefore, in order to understand the
random forest classifier, we first need to investigate decision trees more simply. A decision tree is a basic
rule-based classifier where data is organized into a tree-like structure before classes are assigned to all data
points in each leaf node of the tree. To construct the tree structure, you can use dataset features to generate
yes/no questions (rules) and repeatedly split the data into smaller subsets until you don’t have any more
rules to apply or every instance is assigned to a specific class.

The performance of the tree is quantified using a metric called Gini impurity where a lower Gini impurity
corresponds to greater variance captured using the given classifier.

2.2.1 Example: Know your flowers

Here, we examine an example created from sci-kit learn. This example will produce a graphic illustrating
how a decision tree is generated from a dataset.

Load libraries
from sklearn import tree

Load data
from sklearn.datasets import load_iris
iris = load_iris()

Divide the data into features and target
X, y = iris.data, iris.target

Building decision tree model
clf = tree.DecisionTreeClassifier ()
clf clf . fit (X, y)

14 2 INTRODUCTION TO MACHINE LEARNING

petal length (cm) <= 2.45
gini = 0.667
samples = 100.0%
value = [0.333, 0,333, 0.333]
class = setosa

petal width (cm) <= 1.75

gini = 0.5

- o™ B850
value = [0.0, 0.5, 0.5]

class = versicolor

T~

mm:a:;j <=4.95

sepal width (cm) <= 3.1
gini = 0.444

~samples = 2.0%

ilall.le- Eﬂ.ﬂ. 0.333, 0.667]

sepal length (cm) <= 6.95
gini = 0.444
samples = 2.0%
value = [D 0. 0.667, 0.333]
class = versicolor

[
/[\
=

Figure 7: Decision tree sourced from sklearn’s iris data.

| # Visualize }
| plt.figure(figsize=(10, 7)) ‘
‘ tree.plot_tree(clf, filled=True, feature_names=iris.feature_names, class_names=iris. ‘
‘ target_names, proportion=True) ‘
| plt.show () ‘
L |

From these results, we can see that conditions of petal and sepal length /width were used to make decisions.
Picking the best split is not an easy task and will significantly affect the performance of the classifier. Solving
this problem is out of the scope of the tutorial; here, we are only focusing on the concept of the decision tree
algorithm to prepare for the following explanation of the Random Forest model.

2.3 Random Forest classifier

A random forest (RF) classifer is composed of multiple decision trees. The classification result of one random
forest is decided by the majority vote from all decision trees (Figure 8). During the training process, the
decision tree algorithm iteratively searches features and determines a threshold value to split the dataset in
such a way that the maximum amount of information possible is conveyed through each node.

Scikit-learn provides dozens of built-in machine-learning algorithms and models, called estimators. Each
estimator can be fitted to some data using its fit method. For example, follow along with the code below to
set up a basic Random Forest Classifier.

[]
‘ from sklearn.ensemble import RandomForestClassifier ‘

15 2 INTRODUCTION TO MACHINE LEARNING

Decision trees

Figure 8: Simplified representation of a random forest classifier.

clf = RandomForestClassifier(random_state=0)
Xx= 1[0z, 2, 3], [11, 12, 13]] # 2 samples, 3 features
y = [’0°, 21°] # classes of each sample

clf.fit (X, y)

Here we define a data set, X, where the rows represent samples and the columns features of the sample.
Here the samples are the vectors [1, 2, 3] and [11, 12, 13]. We then define which classes/groups these
samples belong to by defining y, where we say the first sample belongs to 0’ and the latter belongs to '1’.
This information is now used to fit and train a RF model, clf. The argument random_state=0 is used to
ensure that every time we run this function, we will obtain the same result by using the same random seed,
which will be helpful for the extent of this tutorial. We will adjust this in the next tutorial in order to
increase the resulting accuracy of our model.

Now that we have a trained model, we can use it to predict a classification output for new entries. First,
let’s test our model to make sure that it returns the same y given our initial X:

clf.predict(X) # predict classes of the training data

Out: array([’0’, ’1°])

As desired, given our training matrix X, our classifier will return y precisely. Since we have validated our
model, we can input other datasets to see what the predicted classifications would be. For instance, let’s use
a very similar, but noticeably different, matrix as input.

clf.predict([[4, 5, 6], [14, 15, 16]1]) # predict classes of new data

Out: array([’0’, 21°])

As you may have expected, the [4,5,6] data entry returned 0, and the [14,15,16] data entry returned 1.
However, this could be for any number of reasons. Maybe the estimator assumed that single-digit numbers
should return 0. Maybe it wanted the numbers to be greater than 7 for being classified as 1. In any case,
this model isn’t going to be very good for a larger variety of datasets. This is primarily because the model
was trained on only two data points. To help resolve this problem, we will train a new model using a larger

16

2 INTRODUCTION TO MACHINE LEARNING

dataset.

2.3.1 Challenge Problem 1: Bigger numbers

Create a random 2D array of data points between 0 and 100 (we suggest using the
numpy randint function). We want each row within our resulting dataset to have
three features, following the same format as the previous training data we have
been using. However, instead of only two samples, increase this number to 2000
(you should end up with a matrix consisting of random numbers of size 2000 x 3).

Then, create a classification array with the value ‘True’ if a data point’s first
value is greater than the second, and ‘False’ otherwise. The third value for each
data point is a red herring! Once you have fit your model, create a new set
of random data points (of the same size as your training data) and test them
against the model for accuracy!

BONUS: Now switch your random integer number generator for one that pro-
duces random numbers pulled from a Gaussian (normal) distribution. Which
estimator yielded better accuracy?

Challenge Problem Solution

import numpy as np
from sklearn.ensemble import RandomForestClassifier

Creating a random set of 3000 data points, each using 3
integer values between 0 and 100

data = np.random.randint (0, 100, size=(2000, 3))

data = np.random.normal (50, 10, size=(2000, 3))

y = datal:,0]>datal:,1] ### Classifier
clf = RandomForestClassifier (random_state=0)
clf.fit(data, y)

Testing new data
dataTest = np.random.randint(0,100,size=(1000,3))
model_prediction = clf.predict(dataTest)

actual_result = dataTest[:,0]>dataTest[:,1]

difference = model_prediction[:] == actual_resultl[:]

accuracy = np.count_nonzero(difference)/np.size(difference)

print (’Accuracy of classifier trained on uniform random data =’, accuracy)

#Gaussian bonus problem

ata2 = np.random.normal(50, 10, size=(2000, 3))

y2 = data2[:,0]>data2[:,1]

clf2 = RandomForestClassifier(random_state=0)

clf2.fit(data2, y2)

model2_prediction= clf2.predict(dataTest)

difference = model2_prediction[:] == actual_resultl[:]

accuracy = np.count_nonzero(difference)/np.size(difference)

print (’Accuracy of classifier trained on Gaussian data =’, accuracy)

If you did the bonus, you'll find that your estimator may have yielded a decently high accuracy (> 95%)
when using the random distribution method. However, you probably found that your test had lower accuracy
when using a normalized Gaussian distribution (= 85%). Further quantifying this level of accuracy will be
the focus of the next challenge problem.

17

2 INTRODUCTION TO MACHINE LEARNING

2.3.2 Challenge Problem 2: Quantifying accuracy dynamics

Using the code you developed above, determine the average accuracy of the
random forest classifier over 50 trials for a sample data size ranging from 2 to
100 data points. Graph the results of this analysis. It may be helpful to define
the accuracy output from the random forest model within a contained function.

Challenge Problem Solution

plt

def RandomForest (data):

y = datal:,0]>datal:,1]
clf = RandomForestClassifier (random_state=0)
clf.fit(data,y)

dataTest = np.random.randint(0,100,size=(1000,3))
prediction = clf.predict(dataTest)

trueResult = dataTest[:,0]>dataTest[:,1]
difference = prediction[:] == trueResultl[:]

Accuracy = np.count_nonzero(difference)/np.size(difference)

return (Accuracy)

numtrials = 50

sizerange = np.arange(2,100)

accuracymat = np.zeros((len(sizerange) ,numtrials))
for i_ind, i in enumerate(sizerange):

for j in range(O,numtrials):
data = np.random.randint(0,100,size=(i,3))
accuracymat [i_ind,j] = RandomForest(data)*100

.plot(accuracymat.mean(axis=1),linewidth=3,color="k’)
plt.
plt.
plt.

xlabel (’Number of sample datapoints’,fontsize=14)
title (’Random Forest Classifier Accuracy’,fontsize=16)
ylabel (’Accuracy, %’,fontsize=14)

Random Forest Classifier Accuracy

90 +

85 4

80 4

751

704

Accuracy, %

65

60 4

55 4

0 2ID 4IU GID él) lll)U
Number of sample datapoints

Figure 9: Random forest classifier average accuracy as a function of initial training sample size over 50 trials.

18 2 INTRODUCTION TO MACHINE LEARNING

Figure 10: Simplified schematic to describe a logistic regression classifier.

2.4 Logistic Regression

We will now look into another common machine learning model. A logistic regression functions by summing
input features with a bias term and returning a value between 0 and 1.

In other words, a logistic regression model is a binary classifier, which is different from our previous RF
classifier, which could classify among multiple groups. Logistic regression is a statistical model and hence,
uses a probabilistic approach. It models the log-odds (natural log of the ratio of probabilities) as a linear
sum (*z*) of the various features (X;) of the sample:

In (%) =2 =By + B Xs + ot B Xy

Here, p(z) is the probability of X belonging to one of the groups (say, group A), X, is the value of the
it" feature of the sample, and n is the number of features.

A Logistic Regression classifier uses the given training data to estimate each of the coefficients involved
in calculating the score z using MLE (Maximum Likelihood estimates). In simple terms, it finds values such
that the likelihood of the given data following the above equation is maximized. Once it is trained, it can
use the coefficients to calculate a score for any input. Then it can calculate the probability using the logistic
function:

B 1

Cl4ez

If p(X) > 0.5 then it classifies the input in group A, otherwise it is classified into group B (Figure 10).
We will explore this using an example and also learn how to utilize python for Logistic Regression.

p(X)

2.4.1 Example: Will it rain tomorrow?

Let’s assume we have a dataset where each sample represents a day using two features: humidity and
temperature. We want to use such data to be able to predict if it will rain tomorrow. As you can see, this is
a binary classification problem where the classes are “it will rain tomorrow” or “it will not rain tomorrow”.
In the following code, we will create a mock dataset that will represent our training data:

import pandas as pd

Imagine you have a DataFrame ‘df‘ with ’Temperature’, ’Humidity’, and ’WillRainTomorrow
’ columns

19

2 INTRODUCTION TO MACHINE LEARNING

Now, we will use this data to train a Logistic regression model available in python as part of the sklearn.linear_model

’WillRainTomorrow’ is 1 if it will rain tomorrow, and O otherwise.

df = pd.DataFrame ({
’Temperature’: [23, 30, 25, 28, 27, 32, 24, 22, 33, 29],
’Humidity’: [70, 55, 75, 60, 80, 50, 68, 65, 45, 58],
’WillRainTomorrow?’: [1, O, 1, O, 1, O, 1, O, 0O, 1]

i)

Split the data into features (X) and target (y)
X = df [[’Temperature’, ’Humidity’]]
y = df [’WillRainTomorrow’]

print (df)

package (more info) Once, we train the model, we can check what coefficients it calculates using the provided
data.

from sklearn.linear_model import LogisticRegression

#Define a Logistic Regression model
model=LogisticRegression ()

#Train the model using X and y

model.fit(X,y)

print ("Intercept: ", model.intercept_)

print ("Coefficients: ", model.coef_)
out: Intercept: [-53.32358036]

Coefficients: [[0.65449537 0.58065493]]

Thus, using our provided data, the model has learned to model the probability of raining as logistic function
of z which is the linear weighted sum of the features: Temperature and humidity.

z = —5b3.32+4 0.65 - Temperature + 0.58 - Humidity

Now, we can use our model to predict if it will rain tomorrow given temperature and humidity of today. Try
it with today’s temperature and humidity below.

todays_Temp=24
todays_Humidity=80
X=[[todays_Temp, todays_Humidity]]

R=model.predict (X)
if R[0]1==0:

print ("It will not rain tomorrow")
else:

print ("It will rain tomorrow")

Logistic Regression can be used to make a non-binary classification using a method called One vs All (OvA)
where a binary model is created for each group and then the classifier that gives the highest probabibility
dictates which group the sample belongs in.

Let’s say we have three groups ‘A’; ‘B’ and ‘C’. The classifier will create 3 models -
e Model that classifies ‘A’ and not ‘A’ by calculating P (X)
e Model that classifies ‘B’ and not ‘B’ by calculating Pg(X)
e Model that classifies ‘C’ and not ‘C’ by calculating P (X)

20 2 INTRODUCTION TO MACHINE LEARNING

The classifier will use these three models to calculate the probability for any given input and assign
the class based on the highest probability, i.e, if Po(X) is the highest, then the input will be categorized
into group C. The LogisticRegression() function by default uses this algorithm when provided training data
containing more than 2 classes.

2.4.2 Challenge Problem 3: Logs versus forests

Using the code you developed in the previous challenge problem, determine the
average accuracy of the random forest classifier and logistic regression model over
10 trials for a sample data size ranging from 10 to 100 data points. Graph the
results of this analysis and compare the results from both methods.

Challenge Problem Solution

import numpy as np

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression

def RandomForest (data):
y = datal:,0]>datal:,1]

clf = RandomForestClassifier (random_state=0)
clf.fit(data,y)

dataTest = np.random.randint (0,100,size=(1000,3))
prediction = clf.predict(dataTest)

trueResult = dataTest[:,0]>dataTest[:,1]
difference = prediction[:] == trueResult[:]

Accuracy = np.count_nonzero(difference)/np.size(difference)
return (Accuracy)

def LogRegress(data):
y = datal:,0]>datal:,1]
if all(y==True) or all(y==False):
return(float ("nan"))
clf = LogisticRegression(random_state=0)
clf.fit(data,y)

dataTest = np.random.randint (0,100,size=(1000,3))
prediction = clf.predict(dataTest)

trueResult = dataTest[:,0]>dataTest[:,1]
difference = prediction[:] == trueResult[:]

Accuracy = np.count_nonzero(difference)/np.size(difference)
return (Accuracy)

numtrials = 10
sizerange = np.arange(10,101,2)
accuracymat = np.zeros((len(sizerange),numtrials))

for i_ind, i in enumerate(sizerange):
for j in range(O,numtrials):
data = np.random.randint(0,100,size=(i,3))
accuracymat [i_ind,j] = RandomForest (data)*100

21 2 INTRODUCTION TO MACHINE LEARNING

plt.plot(sizerange ,accuracymat.mean(axis=1),linewidth=3,color=’k’,label=’Random
Forest’)

plt.xlabel (’Number of sample datapoints’,fontsize=14)

plt.title(’Classifier Accuracy’,fontsize=16)

plt.ylabel (’Accuracy, 7%’,fontsize=14)

plt.ylim((50,100))

for i_ind, i in enumerate(sizerange):
for j in range(O,numtrials):
data = np.random.randint(0,100,size=(i,3))
accuracymat [i_ind,j] = LogRegress(data)=*100

plt.plot(sizerange ,accuracymat.mean(axis=1),linewidth=3,color="r’,label=’Logistic
regression’)

plt.legend ()

plt.show ()

o0 Classifier Accuracy

90 +

80 1

70 4

Accuracy, %

60 -

== Random Forest

= | ogistic regression

50 T T T T

20 40 60 80 100
Number of sample datapoints

Figure 11: Comparison of accuracy comparison between logistic regression and random forest machine
learning algorithms.

2.4.3 Challenge Problem 4: Too many imposters

Repeat the previous challenge problem with a dataset of size 100 but increase
the number of features from 3 to 103 (intervals of 10). Define the classification
as before (determined by the first two features). Essentially, this will provide an
increasing number of uninformative features (noise) in the dataset.

Challenge Problem Solution

import numpy as np

import matplotlib.pyplot as plt

from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression

def RandomForest (data,i):
y = datal:,0]>datal:,1]

22

2 INTRODUCTION TO MACHINE LEARNING

def

clf = RandomForestClassifier (random_state=0)
clf.fit(data,y)

dataTest = np.random.randint(0,100,size=(1000,2+1i))
prediction = clf.predict(dataTest)

trueResult = dataTest[:,0]>dataTest[:,1]
difference = prediction[:] == trueResultl[:]

Accuracy = np.count_nonzero(difference)/np.size(difference)
return (Accuracy)

LogRegress (data,i):

y = datal:,0]>datal:,1]

if all(y==True) or all(y==False):
return(float("nan"))

clf = LogisticRegression(random_state=0)

clf.fit(data,y)

dataTest = np.random.randint(0,100,size=(1000,2+1i))
prediction = clf.predict(dataTest)

trueResult = dataTest[:,0]>dataTest[:,1]
difference = prediction[:] == trueResultl[:]

Accuracy = np.count_nonzero(difference)/np.size(difference)
return (Accuracy)

numtrials = 10

sizerange = np.arange(1,102,10)

accuracymat = np.zeros((len(sizerange),numtrials))
for i_ind, i in enumerate(sizerange):

for j in range(O,numtrials):

plt.

plt.
plt.
plt.
plt.

for

plt.

plt.
plt.

data = np.random.randint(0,100,size=(100,2+1i))
accuracymat [i_ind,j] = RandomForest (data,i)*100

plot(sizerange ,accuracymat.mean(axis=1),linewidth=3,color="k’,label="Random
Forest’)

xlabel (’Number of uninformative features’,fontsize=14)

title(’Classifier Accuracy’,fontsize=16)

ylabel(’Accuracy, /%’,fontsize=14)

y1lim ((50,100))

i_ind, i in enumerate(sizerange):

for j in range(O,numtrials):
data = np.random.randint (0,100,size=(100,2+1i))
accuracymat [i_ind,j] = LogRegress(data,i)*100

plot(sizerange ,accuracymat.mean(axis=1),linewidth=3,color="r’,label="Logistic
regression’)

legend ()

show ()

23 2 INTRODUCTION TO MACHINE LEARNING

o0 Classifier Accuracy

= Random Forest
= | 0gistic regression

a0

80+

70 4

Accuracy, %

60 1

50

2|0 40 6|0 80 100
Number of uninformative features

o4

Figure 12: Comparison of LR with RF accuracy for data with a large amount of uninformative features.

2.5 Multilayer Perceptron

A Multilayer Perceptron (MLP) is a supervised neural network model that learns a transformation function
to convert input arrays into output arrays based on a training dataset. This sounds similar to the logistic
regression model, which transforms the data using a linear sum to predict output. This is done using multiple
layers of nodes (also referred to as neurons) in a directed graph, with each layer fully connected to the next
one. The nodes in the MLP are organized into an input layer, one or more hidden layers, and an output
layer (Figure 13).

e Input Layer: This layer consists of nodes corresponding to the input features. Each node in this
layer represents an individual feature.

e Hidden Layers: These layers are between the input and output layers. Each node in these layers uses
a nonlinear function with the purpose of transforming the inputs into something that the output layer
can use. (This is simlar to how in Logistic regression the input features are converted into a z-score as
a linear sum and then into a probability).

e Output Layer: The final layer is the output layer, which is the class label for the sample.

Each node in a layer is connected to all the nodes in the next layer (shown in the below figure). These
connections are weighted, and the training data is used to determine weights. There are various algorithms
that MLPs can use to solve for the weights. In the example, we will use Ibfgs because it is efficient for small
samples.

24 2 INTRODUCTION TO MACHINE LEARNING

p=0.67

Hidden layers

Figure 13: Two hidden layer MLP.

Look more closely at the example flowchart (Figure 13). On the lefthand side, we have the input layer
where data (input as some array of size n = 3 here) is fed to the MLP. Each data point represents a different
feature of the system. If you were making a script to estimate a human’s weight, you might include input
variables like height, age, exercise, number of cinnamon rolls consumed per hour, etc. This data is passed
to the hidden layers, which apply a weighted sum of each of the previous layer’s cells (also called Neurons),
then transforms them with a non-linear function. This is repeated for the second hidden layer. Finally, the
output later transforms the values in the second hidden layer to a usable output. In our example, it would
hopefully line up with an expected weight.

MLPs have an advantage over classifiers and other regression models in that they are powerful tools for
learning non-linear models and can be modified to adapt to train to data in real-time. However, MLPs can
be sensitive to different random initializations as well as feature scaling. Furthermore, MLPs often require
tuning parameters such as the number of hidden layers and neurons to obtain high degrees of accuracy. Give
the following example a try:

from sklearn.neural_network import MLPClassifier

X = [[0o., 0.], [1., 1.]]

y = [0, 1]

the hidden layer size variable tells us that the first hidden layer

has 3 neurons, the second has 2. (like in the diagram)

clf = MLPClassifier(solver=’1bfgs’, alpha=1le-5,
hidden_layer_sizes=(3, 2), random_state=1)

clf.fit (X, y)

From here, we can make predictions just like using the other models
clf.predict([[2., 2.1, [-1., -2.11)

We now offer a slightly more complex example that you can try. Notice the new functions imported here:

from sklearn.neural_network import MLPClassifier
from sklearn.datasets import make_classification
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score

Generate a random n-class classification problem
X, y = make_classification(n_samples=100, n_features=2, n_informative=2, n_redundant=
0, random_state=1)

25

2 INTRODUCTION TO MACHINE LEARNING

Split the dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=1)

Create a MLPClassifier
mlp = MLPClassifier (hidden_layer_sizes=(5,2,), random_state=0)

Train the model
mlp.fit(X_train, y_train)

Predict the response for test dataset
y_pred = mlp.predict(X_test)

Model Accuracy
print ("Accuracy:",accuracy_score(y_test, y_pred))

Before we analyze the MLP results, let’s look at new functions that can make life easier when testing

various ML classifiers:

e Generating random datasets: An easy way of creating random datasets to test classifiers using the

make_classification function of sklearn.datasets module. Here we create a dataset of 100 samples with
2 features, where both are informative and have no redundancy amongst them.

Creating training and testing datasets: The train_test_split from the sklearn.model_selection mod-
ule is a function that helps split our data into a set for training the classifier and a set for testing the
classifier. The stratify=y parameter makes sure that the proportion of classes in each set is the same
as the proportion of classes in the original data provided.

Measuring accuracy: Previously, we have manually calculated the accuracy of models. A function
in python that does the same is accuracy_score from the sklearn.metrics module.

For using MLP, we use the MLPclassifier function of sklearn.neural_network module. We define the
hidden layer sizes to be used as (5,2) which means that it will have 2 hidden layers; the first layer will
have 5 nodes and the second layer will have 2 nodes. There is no set rule when it comes to deciding
the size of the hidden layers. For many problems, a single large hidden layer is sufficient.

2.6 Transformers and pre-processors

Machine learning algorithms often use multiple steps instead of singular estimators to predict results.
Usually, there are many pre-processing steps that transform the data in some way which makes it more
accessible to the estimator, leading to more accurate results.

Let’s cover the StandardScaler which centers data points and transforms them based on their mean
and standard deviation. Let us consider a dataset where one feature is “Years of experience” and
another feature is “Salary” in a job. You can imagine that experience will range from 1 to 40 years and
salary can range from 10,000 to 1,000,000. Thus, salary will have a greater variance. In this scenario,
we know that these differences in variance are due to the different scales at which the features are
measured. Hence, to adjust for this we can rescale our data. We rescale the data such that the mean
of the feature is 0 and the variance is 1 as follows:

Zi = —5— (1)

where X; is the it" value of the feature X. By subtracting each value with the average value of the
feature (X), we rescale it such that the new mean of the feature is 0. Now we can divide it by the

2 INTRODUCTION TO MACHINE LEARNING

standard deviation, Sx to reduce the variance to 1. Hence, we obtain the standardized value for that
element, which is Z;. By doing these for all our features, we can remove any potentially confounding
effects of scaling.

from sklearn.preprocessing import StandardScaler

data = [[0,0],[1,1],[1,0],[2,1]]
scaler = StandardScaler ()
scaler.fit (data)
print(scaler.transform(data))

[[-1.41421356 -1. 1
[0. 1.]
[o. -1.

[1.41421356 1. 11

Now we'’re going learn how to use a pipeline to apply this transformation (and other transformations
as needed) to an estimator.

2.7 Pipelines

Pipelines are end-to-end constructs of various sequential steps that can lead to a desired result. For
example, the pipeline to bring you bottled water goes from a natural source to a filtering facility to a
packaging facility to a distributor and then finally to you. In machine learning, you can think of the
natural source as your data and your result is the bottle of water you receive. The facilities in between
represent the various pre-processors, transformers, and classifiers that you use. This essentially allows
us to automate a set of steps such that we can enter the data into the pipeline and then obtain our
result without having to manually complete each step. The next example will help explain this further.

2.7.1 Example: Using a pipeline
We will try to define and utilize a pipeline, *pipe*, which takes the data and does the following:

1. Standardizes the data (using StandardScaler)

2. Uses a logistic regression classifier

This will be done using the sklearn.pipeline module.

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

load the iris dataset and split it into train and test sets
X , y = load_iris(return_X_y=True)
X_train , X_test , y_train , y_test = train_test_split (X , y , random_state=0)

For this example, we will use a botanical dataset available in the sklearn package. We load and split
the dataset into a training set that can be used to develop and train our ML classifier and a test set
which can be used to check the accuracy of the trained model.

from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression

create a pipeline object
pipe = make_pipeline(StandardScaler() , LogisticRegression())
pipe.fit(X_train, y_train)

27

2 INTRODUCTION TO MACHINE LEARNING

Now, we define a pipeline as we had described above using the make_pipeline function. This module
uses the same API as the classifiers we used previously. Hence we use the pipe.fit(X_train,y_train)
using the previously created training dataset to train the model. When we enter our data into our
pipeline, the program first standardizes the data using StandardScaler() and then uses the transformed
data to train a LogisticRegression() model.

from sklearn.metrics import accuracy_score

we can now use it like any other estimator
accuracy_score (pipe.predict (X_test) , y_test)

Now, we can use a function from the sklearn.metrics module called accuracy_score to test the trained
model using the previously created training datasets.

2.7.2 Challenge Problem 5: Down the pipeline

Define two pipelines:
— Pipeline 1: Standardization followed by a RF classifier
— Pipeline 2: Standardization followed by a LR model
Now use two types of random data from a(n):
— Gaussian distribution
— Uniform distribution

to train the models. Compare your model accuracy for the trials. Repeat the
measurement several times and plot the resulting accuracies.

Challenge Problem Solution

from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
import matplotlib.pyplot as plt

numtrials=50

#Test using Gaussian data

test_acc_GauRFC = np.zeros(numtrials)

test_acc_GaulLog = np.zeros(numtrials)

for i in range(0, numtrials):
pipe_RF = make_pipeline(StandardScaler () , RandomForestClassifier(random_state=0))
pipe_Log = make_pipeline(StandardScaler() , LogisticRegression())

X = np.random.normal (50,10,size=(2000,3))

y = X[:,0] > X[:,1]

X_train , X_test , y_train , y_test = train_test_split (X, y, random_state=0)
pipe_RF.fit(X_train , y_train)

pipe_Log.fit(X_train , y_train)

test_acc_GauRFC[i] = accuracy_score(pipe_RF.predict(X_test) , y_test)
test_acc_GauLogl[i] = accuracy_score(pipe_Log.predict(X_test) , y_test)

28 2 INTRODUCTION TO MACHINE LEARNING
fig, axs = plt.subplots(1l,2, figsize=(12,6))
axs [0] .hist ([test_acc_GauRFC , test_acc_GauLog], label = [’Random Forest’,’Logistic
Regression’], color = [’cornflowerblue’,
’orchid’], bins=20)
axs [0] .set_xlabel (’Accuracy, Gaussian dist.’)
axs [0].legend ()
#Test using uniform data
test_acc_GauRFC = np.zeros(numtrials)
test_acc_Gaulog = np.zeros(numtrials)
for i in range (0, numtrials):
pipe_RF = make_pipeline(StandardScaler () , RandomForestClassifier (random_state=0))
pipe_Log = make_pipeline(StandardScaler() , LogisticRegression())
X = np.random.uniform(0,100,size=(2000,3))
y = X[:,0] > X[:,1]
X_train , X_test , y_train , y_test = train_test_split (X, y, random_state=0)
pipe_RF.fit(X_train , y_train)
pipe_Log.fit(X_train , y_train)
test_acc_GauRFC[i] = accuracy_score(pipe_RF.predict(X_test) , y_test)
test_acc_GauLog[i]l = accuracy_score(pipe_Log.predict(X_test) , y_test)
axs[1] .hist ([test_acc_GauRFC , test_acc_GauLog], label = [’Random Forest’,’Logistic
Regression’], color = [’cornflowerblue’,
’orchid’], bins=20)
axs[1].set_xlabel(’Accuracy, uniform dist.’)
plt.show ()
14 | M8 Random Forest 14
I Logistic Regression
12 12 A
10 A 10 A
8 8
6 6
44 4
27 2
0 I T 0-
0.970 0975 0.980 0985 0.990 0995 1.000 0.965 0.970 0.975 0.980 0.985 0.990 0.995 1.000

Accuracy, Gaussian dist. Accuracy, uniform dist.

2 INTRODUCTION TO MACHINE LEARNING

2.7.3 Challenge Problem 6: Again with MLP

Just as you can use the LogisticRegression and RandomForestClassifies tools in
a pipeline, you can also use the MLPClassifier in the same scenarios. Starting
from the previous challenge problem, augment your code to compare the accuracy
between a RandomForestClassifier and the MLPClassifier. Try to make adjust-
ments to increase the accuracy. Hint: Consider the size and number of hidden
layers, the accuracy parameter alpha, and the random state.

Challenge Problem Solution

from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestClassifier
from sklearn.linear_model import LogisticRegression
from sklearn.pipeline import make_pipeline
from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import numpy as np
Begin Test for Gaussian RFC
test_acc_GauRFC = np.zeros(50)
for i in range(len(test_acc_GauRFC)):
pipe = make_pipeline(
StandardScaler (),
RandomForestClassifier (random_state=0)

)

X = np.random.normal (50, 10, size=(2000, 3))

#X = np.random.randint (0, 100, size=(2000, 3))

y = X[:,0]>X[:,1]

X_train, X_test, y_train, y_test = train_test_split(X, Y, random_state=0)

pipe.fit(X_train, y_train)
test_acc_GauRFC[i] = accuracy_score(pipe.predict(X_test), y_test)

Begin Test for Gaussian MLPClassifier
test_acc_GauMLP = np.zeros(50)
for i in range(len(test_acc_GauMLP)):
pipe = make_pipeline(
StandardScaler (),
MLPClassifier (
solver="1bfgs",
alpha=1le-5,
random_state=1,
max_iter=2000,
early_stopping=True,
hidden_layer_sizes=(3,2)

)

X = np.random.normal (50, 10, size=(2000, 3))

#X = np.random.randint (0, 100, size=(2000, 3))

y = X[:,0]1>X[:,1]

X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0)

pipe.fit(X_train, y_train)

test_acc_GauMLP[i] = accuracy_score(pipe.predict(X_test), y_test)
plt.hist([test_acc_GauRFC,test_acc_GauMLP],label=[’Random Forest’,’MLP’],bins=20)
plt.xlabel (’Accuracy’)
plt.legend ()

30

2 INTRODUCTION TO MACHINE LEARNING

2.7.4 Challenge Problem 7: The only alcohol you will get served

Create three pipelines that standardize data and classify them using each of the
three classifiers taught today.

Use the dataset found here to train your model. It has 11 variables reporting
various features of red wine samples. We will treat quality as the dependent
variable.

Now use the dataset found here which reports the same variables for white wine
sample. Predict the quality of these samples and crosscheck with the reported
quality. How do the various models compare to each other? Comment on the
accuracies.

Hint: Load the data using pandas with the code: pd.read_csv(url,delimiter=";)

Challenge Problem Solution

import numpy as np

from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.neural_network import MLPClassifier
from sklearn.ensemble import RandomForestClassifier
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import accuracy_score

from sklearn.pipeline import make_pipeline

import pandas as pd

url=’https://raw.githubusercontent.com/Sdatta4556/Workshop2023_ML1/main/winequality-red
.csv’

data = pd.read_csv(url, delimiter=’;’)

print (data)

col=data.columns
X_train=datalcol[:-1]]
y_train=datal[’quality’]

pipe_RF = make_pipeline(StandardScaler() , RandomForestClassifier ())

pipe_Log = make_pipeline(StandardScaler() , LogisticRegression(max_iter=1000))

pipe_MLP = make_pipeline(StandardScaler (), MLPClassifier (hidden_layer_sizes=(20, 10,),
max_iter=10000))

pipe_RF.fit(X_train,y_train)
pipe_Log.fit(X_train,y_train)
pipe_MLP.fit(X_train,y_train)

url="https://raw.githubusercontent.com/Sdatta4556/Workshop2023_ML1/main/winequality-
white.csv’
data = pd.read_csv(url, delimiter=’;’)

col=data.columns
X_test=datalcol[:-1]]
y_test=datal[’quality’]

acc_RF=accuracy_score(pipe_RF.predict(X_test),y_test)
acc_Log=accuracy_score(pipe_Log.predict(X_test),y_test)
acc_MLP=accuracy_score(pipe_MLP.predict(X_test),y_test)

print ("Accuracy of trained model on red wine dataset using RF:", acc_RF)
print ("Accuracy of trained model on red wine dataset using Logistic Regression:",
acc_Log)

print ("Accuracy of trained model on red wine dataset using MLP:", acc_MLP)

31

2 INTRODUCTION TO MACHINE LEARNING

You will notice that our models have low accuracy in predicting the quality of white wine even though
it was trained on a large dataset (>1500 samples). This can be due to two reasons:

— Red wine is not a good predictor of white wine

— There are too many unrelated features in our dataset

There is nothing that can be done to solve the first problem as it is an intrinsic property of the
system being studied. However, we can try solving the latter by choosing features that are informative
and removing noise from our data. Tomorrow, we will learn how to do so using the protein data of
SARS-CoV-2 and SARS-CoV.

32

REFERENCES

References

(1)

Iversen, L. F.; Mgller, K. B.; Pedersen, A. K.; Peters, G. H.; Petersen, A. S.; Andersen, H. S.;
Branner, S.; Mortensen, S. B.; Mgller, N. P. H. Structure Determination of T Cell Protein-tyrosine
Phosphatase*. Journal of Biological Chemistry 2002, 277, 19982-19990, DOI: https://doi.org/
10.1074/jbc.M200567200.

Ullrich, S.; Ekanayake, K. B.; Otting, G.; Nitsche, C. Main protease mutants of SARS-CoV-2
variants remain susceptible to nirmatrelvir. Bioorganic & Medicinal Chemistry Letters 2022, 62,
128629, DOL: https://doi.org/10.1016/j.bmcl.2022.128629.

	Introduction to molecular visualization
	Setting up PyMOL
	Loading your first protein
	Challenge Problem 1: Exploring multiple ways to visualize a protein
	Challenge Problem 2: Observing amino acids
	Tips for using the measurement wizard

	Adding some complexity
	Challenge Problem 3: Isolating a ligand

	Mini project: Understanding the SARS main protease
	Challenge Problem 4: Characterizing mutants
	Challenge Problem 5: Visualizing different interactions
	Challenge Problem 6: Putting it together

	Introduction to machine learning
	Background and fundamentals
	Decision tree model
	Example: Know your flowers

	Random Forest classifier
	Challenge Problem 1: Bigger numbers
	Challenge Problem 2: Quantifying accuracy dynamics

	Logistic Regression
	Example: Will it rain tomorrow?
	Challenge Problem 3: Logs versus forests
	Challenge Problem 4: Too many imposters

	Multilayer Perceptron
	Transformers and pre-processors
	Pipelines
	Example: Using a pipeline
	Challenge Problem 5: Down the pipeline
	Challenge Problem 6: Again with MLP
	Challenge Problem 7: The only alcohol you will get served

